Disturbing the q-Dyson Conjecture

نویسندگان

  • Andrew V. Sills
  • ANDREW V. SILLS
چکیده

I discuss the computational methods behind the formulation of some conjectures related to variants on Andrews’ q-Dyson conjecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disturbing the Dyson conjecture, in a generally GOOD way

Dyson’s celebrated constant term conjecture (J. Math. Phys., 3 (1962): 140–156) states that the constant term in the expansion of ∏ 15i6=j5n(1 − xi/xj)j is the multinomial coefficient (a1 +a2 + · · ·+an)!/(a1!a2! · · · an!). The definitive proof was given by I. J. Good (J. Math. Phys., 11 (1970) 1884). Later, Andrews extended Dyson’s conjecture to a q-analog (The Theory and Application of Speci...

متن کامل

Disturbing the Dyson Conjecture (in a GOOD Way)

We present a case study in experimental yet rigorous mathematics by describing an algorithm, fully implemented in both Mathematica and Maple, that automatically conjectures, and then automatically proves, closed-form expressions extending Dyson’s celebrated constant term conjecture.

متن کامل

A Proof of Andrews ' < ? - Dyson Conjecture for «

Andrews' g-Dyson conjecture is that the constant term in a polynomial associated with the root system An _, is equal to the ^-multinomial coefficient. Good used an identity to establish the case q = 1, which was originally raised by Dyson. Andrews established his conjecture for n < 3 and Macdonald proved it when a¡ = a2 = ■ ■ ■ = a„ = 1,2 or oo for all n > 2. We use a ¿/-analog of Good's identi...

متن کامل

A SHORT PROOF OF THE ZEILBERGER-BRESSOUD q-DYSON THEOREM

We give a formal Laurent series proof of Andrews’s q-Dyson Conjecture, first proved by Zeilberger and Bressoud.

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007